Sky

The sky (or celestial dome) is everything that lies above the surface of the Earth, including the atmosphere and outer space.

In the field of astronomy, the sky is also called the celestial sphere. This is viewed from Earth's surface as an abstract dome on which the Sun, stars, planets, and Moon appear to be traveling. The celestial sphere is conventionally divided into designated areas called constellations. Usually, the term sky is used informally as the point of view from the Earth's surface; however, the meaning and usage can vary. In some cases, such as in discussing the weather, the sky refers to only the lower, more dense portions of the atmosphere.

During daylight, the sky appears to be blue because air scatters more blue sunlight than red. At night, the sky appears to be a mostly dark surface or region spangled with stars. During the day, the Sun can be seen in the sky unless obscured by clouds. In the night sky (and to some extent during the day) the Moon, planets and stars are visible in the sky. Some of the natural phenomena seen in the sky are clouds, rainbows, and aurorae. Lightning and precipitation can also be seen in the sky during storms. Birds, insects, aircraft, and kites are often considered to fly in the sky. Due to human activities, smog during the day and light pollution during the night are often seen above large cities.

During the day
Except for light that comes directly from the sun, most of the light in the day sky is caused by scattering, which is dominated by a small-particle limit called Rayleigh Scattering. The scattering due to molecule sized particles (as in air) is greater in the forward and backward directions than it is in the lateral direction. Scattering is significant for light at all visible wavelengths but is stronger at the shorter (bluer) end of the visible spectrum, meaning that the scattered light is bluer than its source, the sun. The remaining sunlight, having lost some of its short wavelength components, appears slightly less blue.

Scattering also occurs even more strongly in clouds. Individual water droplets exposed to white light will create a set of colored rings. If a cloud is thick enough, scattering from multiple water droplets will wash out the set of colored rings and create a washed-out white color.

The sky can turn a multitude of colors such as red, orange, purple and yellow (especially near sunset or sunrise) when the light must pass through a much longer path (or optical depth) through the atmosphere. Scattering effects also partially polarize light from the sky and are most pronounced at an angle 90° from the sun. Scattered light from the horizon travels through as much as 38 times the atmosphere as does light from the zenith, causing a blue gradient: vivid at the zenith, and pale near the horizon. Because red light also scatters if there is enough air between the source and the observer causing parts of the sky to change color during a sunset. As the amount of atmosphere nears infinity, the scattered light appears whiter and whiter.

The sun is not the only object that may appear less blue in the atmosphere. Far away clouds or snowy mountaintops may appear yellowish. The effect is not very obvious on clear days but is very pronounced when clouds cover the line of sight, reducing the blue hue from scattered sunlight. At higher altitudes, the sky tends toward darker colors since scattering is reduced due to lower air density; an extreme example is the moon, where there is no atmosphere and no scattering, making the sky on the moon black even when the sun is visible.

Sky luminance distribution models have been recommended by the International Commission on Illumination (CIE) for the design of daylighting schemes. Recent developments relate to “all sky models” for modelling sky luminance under weather conditions ranging from clear to overcast.

Dusk and dawn
The intensity of the sky varies greatly over the day, and the primary cause of that intensity differs as well. When the sun is well above the horizon, direct scattering of sunlight (Rayleigh scattering) is the overwhelmingly dominant source of light. However, in twilight, the period of time between sunset and night and between night and sunrise, the situation is more complicated. Green flashes and green rays are optical phenomena that occur shortly after sunset or before sunrise, when a green spot is visible above the sun, usually for no more than a second or two, or it may resemble a green ray shooting up from the sunset point. Green flashes are a group of phenomena that stem from different causes, most of which occur when there is a temperature inversion (when the temperature increases with altitude rather than the normal decrease in temperature with altitude). Green flashes may be observed from any altitude (even from an aircraft). They are usually seen at an unobstructed horizon, such as over the ocean, but are also seen over cloud tops and mountain tops. Green flashes may also be observed at the horizon in association with the Moon and bright planets, including Venus and Jupiter.

The Earth's shadow is the shadow that the Earth casts on its atmosphere. This atmospheric phenomenon is sometimes seen twice a day, around the times of sunset and sunrise. When the weather conditions and the observer's viewing point permit a clear sight of the horizon, the shadow can be seen as a dark blue or greyish-blue band. Assuming the sky is clear, the Earth's shadow is visible in the half of the sky opposite to the sunset or sunrise, and is seen as a dark blue band right above the horizon. A related phenomenon is the "Belt of Venus" or "anti-twilight arch", a pink band that is visible above the dark blue band of the Earth's shadow in the same part of the sky. There is no clear dividing line between the Earth's shadow and the Belt of Venus: one colored band shades into the other in the sky.

Twilight is divided into three segments according to how far the sun is below the horizon, measured in segments of 6°. After sunset the civil twilight sets in; it ends when the sun drops more than 6° below the horizon. This is followed by the nautical twilight, when the sun is 6° and 12° below the horizon (heights of between −6° and −12°), after which comes the astronomical twilight, defined as the period from −12° to −18°. When the sun drops more than 18° below the horizon, the sky generally attains its minimum brightness.

Several sources can be identified as the source of the intrinsic brightness of the sky, namely airglow, indirect scattering of sunlight, scattering of starlight, and artificial light pollution.

During the night
The term night sky refers to the sky as seen at night. The term is usually associated with skygazing and astronomy, with reference to views of celestial bodies such as stars, the Moon, and planets that become visible on a clear night after the Sun has set. Natural light sources in a night sky include moonlight, starlight, and airglow, depending on location and timing. The fact that the sky is not completely dark at night can be easily observed. Were the sky (in the absence of moon and city lights) absolutely dark, one would not be able to see the silhouette of an object against the sky.

The night sky and studies of it have a historical place in both ancient and modern cultures. In the past, for instance, farmers have used the state of the night sky as a calendar to determine when to plant crops. The ancient belief in astrology is generally based on the belief that relationships between heavenly bodies influence or convey information about events on Earth. The scientific study of the night sky and bodies observed within it, meanwhile, takes place in the science of astronomy.

Within visible-light astronomy, the visibility of celestial objects in the night sky is affected by light pollution. The presence of the Moon in the night sky has historically hindered astronomical observation by increasing the amount of ambient lighting. With the advent of artificial light sources, however, light pollution has been a growing problem for viewing the night sky. Special filters and modifications to light fixtures can help to alleviate this problem, but for the best views, both professional and amateur optical astronomers seek viewing sites located far from major urban areas.

Use in weather forecasting
Along with pressure tendency, the condition of the sky is one of the more important parameters used to forecast weather in mountainous areas. Thickening of cloud cover or the invasion of a higher cloud deck is indicative of rain in the near future. At night, high thin cirrostratus clouds can lead to halos around the moon, which indicate the approach of a warm front and its associated rain. Morning fog portends fair conditions and can be associated with a marine layer, an indication of a stable atmosphere. Rainy conditions are preceded by wind or clouds which prevent fog formation. The approach of a line of thunderstorms could indicate the approach of a cold front. Cloud-free skies are indicative of fair weather for the near future. The use of sky cover in weather prediction has led to various weather lore over the centuries.
en.wikipedia.org

Continue reading
iepriekšējā123...22
iepriekšējā123...22
When choosing to browse our site, you consent to the use of cookies to tailor your experience. You can withdraw your consent at any time by changing your browser settings and deleting saved cookies. Privacy Policy
Accept