Ant

Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants appear in the fossil record across the globe in considerable diversity during the latest Early Cretaceous and early Late Cretaceous, suggesting an earlier origin. Ants evolved from vespoid wasp ancestors in the Cretaceous period, and diversified after the rise of flowering plants. More than 12,500 of an estimated total of 22,000 species have been classified. They are easily identified by their elbowed antennae and the distinctive node-like structure that forms their slender waists.

Ants form colonies that range in size from a few dozen predatory individuals living in small natural cavities to highly organised colonies that may occupy large territories and consist of millions of individuals. Larger colonies consist of various castes of sterile, wingless females, most of which are workers (ergates), as well as soldiers (dinergates) and other specialised groups. Nearly all ant colonies also have some fertile males called "drones" (aner) and one or more fertile females called "queens" (gynes). The colonies are described as superorganisms because the ants appear to operate as a unified entity, collectively working together to support the colony.

Ants have colonised almost every landmass on Earth. The only places lacking indigenous ants are Antarctica and a few remote or inhospitable islands. Ants thrive in most ecosystems and may form 15–25% of the terrestrial animal biomass. Their success in so many environments has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Their long co-evolution with other species has led to mimetic, commensal, parasitic, and mutualistic relationships.

Ant societies have division of labour, communication between individuals, and an ability to solve complex problems. These parallels with human societies have long been an inspiration and subject of study. Many human cultures make use of ants in cuisine, medication, and rituals. Some species are valued in their role as biological pest control agents. Their ability to exploit resources may bring ants into conflict with humans, however, as they can damage crops and invade buildings. Some species, such as the red imported fire ant (Solenopsis invicta), are regarded as invasive species, establishing themselves in areas where they have been introduced accidentally.

Ants
 Kingdom:   Animalia
 Phylum:  Arthropoda
 Class:  Insecta
 Order:  Hymenoptera
 Infraorder:  Aculeata
 Superfamily:  Formicoidea
 Family:  Formicidae


Distribution and diversity

Ants are found on all continents except Antarctica, and only a few large islands, such as Greenland, Iceland, parts of Polynesia and the Hawaiian Islands lack native ant species. Ants occupy a wide range of ecological niches and exploit many different food resources as direct or indirect herbivores, predators and scavengers. Most ant species are omnivorous generalists, but a few are specialist feeders. Their ecological dominance is demonstrated by their biomass: ants are estimated to contribute 15–20 % (on average and nearly 25% in the tropics) of terrestrial animal biomass, exceeding that of the vertebrates.

Ants range in size from 0.75 to 52 millimetres (0.030–2.0 in),] the largest species being the fossil Titanomyrma giganteum, the queen of which was 6 centimetres (2.4 in) long with a wingspan of 15 centimetres (5.9 in). Ants vary in colour; most ants are red or black, but a few species are green and some tropical species have a metallic lustre. More than 12,000 species are currently known (with upper estimates of the potential existence of about 22,000; see the article List of ant genera), with the greatest diversity in the tropics. Taxonomic studies continue to resolve the classification and systematics of ants. Online databases of ant species, including AntBase and the Hymenoptera Name Server, help to keep track of the known and newly described species. The relative ease with which ants may be sampled and studied in ecosystems has made them useful as indicator species in biodiversity studies.

Morphology
Ants are distinct in their morphology from other insects in having elbowed antennae, metapleural glands, and a strong constriction of their second abdominal segment into a node-like petiole. The head, mesosoma, and metasoma are the three distinct body segments (formally tagmata). The petiole forms a narrow waist between their mesosoma (thorax plus the first abdominal segment, which is fused to it) and gaster (abdomen less the abdominal segments in the petiole). The petiole may be formed by one or two nodes (the second alone, or the second and third abdominal segments).

Like other insects, ants have an exoskeleton, an external covering that provides a protective casing around the body and a point of attachment for muscles, in contrast to the internal skeletons of humans and other vertebrates. Insects do not have lungs; oxygen and other gases, such as carbon dioxide, pass through their exoskeleton via tiny valves called spiracles. Insects also lack closed blood vessels; instead, they have a long, thin, perforated tube along the top of the body (called the "dorsal aorta") that functions like a heart, and pumps haemolymph toward the head, thus driving the circulation of the internal fluids. The nervous system consists of a ventral nerve cord that runs the length of the body, with several ganglia and branches along the way reaching into the extremities of the appendages.

Head
An ant's head contains many sensory organs. Like most insects, ants have compound eyes made from numerous tiny lenses attached together. Ant eyes are good for acute movement detection, but do not offer a high resolution image. They also have three small ocelli (simple eyes) on the top of the head that detect light levels and polarization. Compared to vertebrates, ants tend to have blurrier eyesight, particularly in smaller species, and a few subterranean taxa are completely blind. However, some ants, such as Australia's bulldog ant, have excellent vision and are capable of discriminating the distance and size of objects moving nearly a metre away.

Two antennae ("feelers") are attached to the head; these organs detect chemicals, air currents, and vibrations; they also are used to transmit and receive signals through touch. The head has two strong jaws, the mandibles, used to carry food, manipulate objects, construct nests, and for defence. In some species, a small pocket (infrabuccal chamber) inside the mouth stores food, so it may be passed to other ants or their larvae.

Mesosoma
Both the legs and wings of the ant are attached to the mesosoma ("thorax"). The legs terminate in a hooked claw which allows them to hook on and climb surfaces. Only reproductive ants, queens, and males, have wings. Queens shed their wings after the nuptial flight, leaving visible stubs, a distinguishing feature of queens. In a few species, wingless queens (ergatoids) and males occur.

Metasoma
The metasoma (the "abdomen") of the ant houses important internal organs, including those of the reproductive, respiratory (tracheae), and excretory systems. Workers of many species have their egg-laying structures modified into stings that are used for subduing prey and defending their nests.

Polymorphism
In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major ergates. Often, the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. These are known as macrergates while smaller workers are known as micrergates. Although formally known as dinergates, such individuals are sometimes called "soldier" ants because their stronger mandibles make them more effective in fighting, although they still are workers and their "duties" typically do not vary greatly from the minor or median workers. In a few species, the median workers are absent, creating a sharp divide between the minors and majors. Weaver ants, for example, have a distinct bimodal size distribution. Some other species show continuous variation in the size of workers. The smallest and largest workers in Pheidologeton diversus show nearly a 500-fold difference in their dry-weights.

Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile, haploid males. The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called repletes. For instance, these replete workers develop in the North American honeypot ant Myrmecocystus mexicanus. Usually the largest workers in the colony develop into repletes; and, if repletes are removed from the colony, other workers become repletes, demonstrating the flexibility of this particular polymorphism. This polymorphism in morphology and behaviour of workers initially was thought to be determined by environmental factors such as nutrition and hormones that led to different developmental paths; however, genetic differences between worker castes have been noted in Acromyrmex sp. These polymorphisms are caused by relatively small genetic changes; differences in a single gene of Solenopsis invicta can decide whether the colony will have single or multiple queens. The Australian jack jumper ant (Myrmecia pilosula) has only a single pair of chromosomes (with the males having just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects.
en.wikipedia.org

Continue reading
When choosing to browse our site, you consent to the use of cookies to tailor your experience. You can withdraw your consent at any time by changing your browser settings and deleting saved cookies. Privacy Policy
Accept